The generator matrix 1 0 1 1 1 X^3+X^2+X 1 1 X^3+X^2 1 X^2+X 1 1 X^3+X^2+X 1 1 X^3 1 1 X^2 1 1 1 X^2 1 X^3+X^2+X 1 1 1 1 1 0 1 X^3+X^2 1 1 1 1 0 1 X+1 X^3+X^2+X X^2+1 1 X^3+X+1 X^3+X^2 1 X^2+X 1 X^2+1 X^3 1 X+1 X^3+X^2+1 1 X^3+X^2+X X^3+X^2+X+1 1 X^3+X^2 0 X^2+1 1 X^3+X^2+X+1 1 X^3+X^2+X X^3+X X^3+X+1 X^3+X 1 1 X^2 1 X^3+X^2 X^2+X X^3+X^2+X X^2 0 0 X^2 0 0 X^3 0 X^3 X^3 X^3+X^2 X^3+X^2 X^3+X^2 X^2 X^3+X^2 0 X^2 X^3+X^2 X^3+X^2 X^2 0 X^3+X^2 X^3 X^3 X^2 X^2 0 X^3 0 X^3+X^2 X^3 X^3+X^2 X^3+X^2 X^2 X^2 X^3+X^2 X^3+X^2 X^2 X^2 0 0 0 X^3+X^2 X^3 X^2 X^2 0 0 X^2 X^2 X^3+X^2 X^3 X^3 X^3 0 X^3 X^3 X^3+X^2 X^2 X^2 X^2 X^3+X^2 X^3+X^2 X^3 X^3 X^3 X^3 X^3 0 0 X^3+X^2 X^2 X^2 0 X^3+X^2 X^2 X^3 generates a code of length 38 over Z2[X]/(X^4) who´s minimum homogenous weight is 34. Homogenous weight enumerator: w(x)=1x^0+158x^34+228x^35+789x^36+430x^37+952x^38+402x^39+758x^40+204x^41+134x^42+8x^43+9x^44+6x^45+10x^46+2x^47+3x^48+2x^54 The gray image is a linear code over GF(2) with n=304, k=12 and d=136. This code was found by Heurico 1.16 in 8.67 seconds.